

American Journal of Medical Genetics 116A:342-347 (2003)

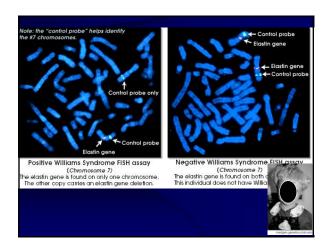
Parental Consanguinity and Congenital Heart Malformations in a Developing Country

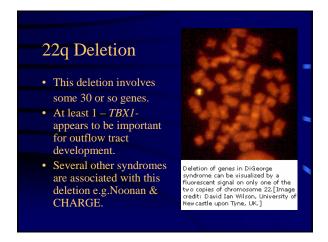
Mona M. Nabulsi, ^{1*} Hala Tamim, ² Maha Sabbagh, ¹ Mounir Y. Obeid, ³ Khaled A. Yunis, ¹ and Fadi F. Bitar ^{1*}

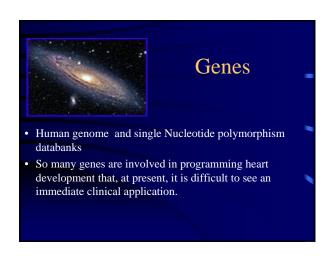
American Journal of Medical Genetics 140(14):1524-30 (2006)

Consanquineous marriage and congenital heart disease: A case control study in the neonatal period.

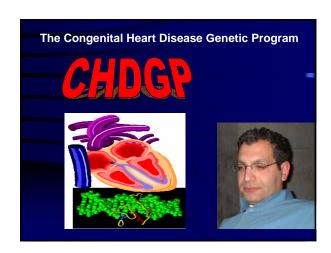
Yunis KA , Mumtaz G, Bitar FF, Chamseddine F, Kassar M, Rashkidi J, Makhoul G, Tamim H .

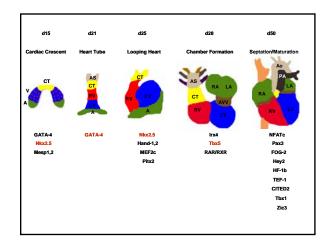

TABLE III. Proportions of First-Cousin Mating in the Different Categories of Cardiovascular Malformations

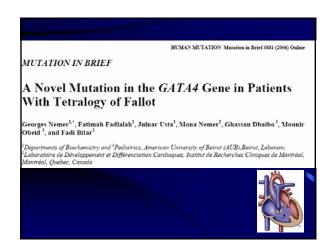

	Total no. (%)	Consanguinity no. (%)	Exact P value ^a	Exact P value ^b
Category I	3 (0.4)	2 (66.7)	0.05	0.02
Category II	144 (18.9)	30 (20.8)	0.009	< 0.0001
Category III	41 (5.4)	11 (26.8)	0.017	0.0003
Category IV	138 (18.2)	26 (18.8)	0.056	< 0.0001
Category V	328 (43.3)	60 (18.3)	0.006	< 0.0001
Category VI	8 (1.1)	1 (12.5)	1.000	0.50
Category VII	97 (12.8)	23 (23.7)	0.004	< 0.0001
Total	759 (100)	153 (20.2)	< 0.0001	< 0.0001

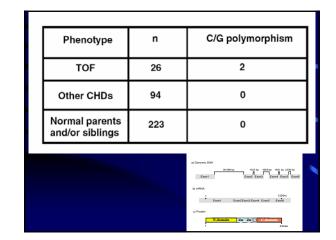

*Comparison is made to the highest proportion of first-cousin mating reported from the NCPNN database (13.2%; Bekaa subjects).

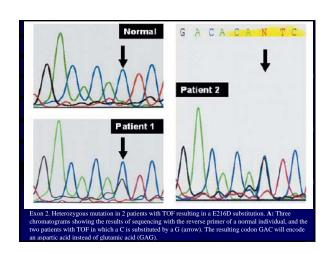
*Comparison is made to the adjusted proportion of first cousin mating of NCPNN database (8.19%).

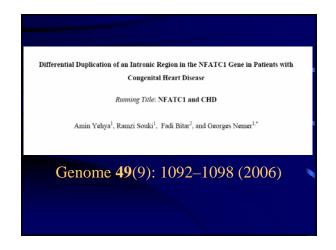


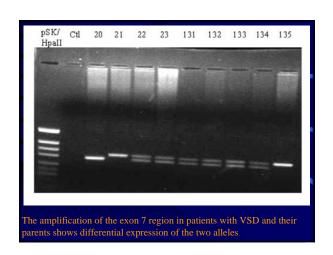


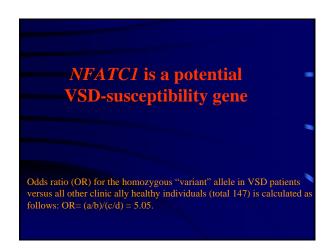


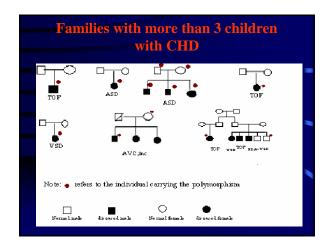


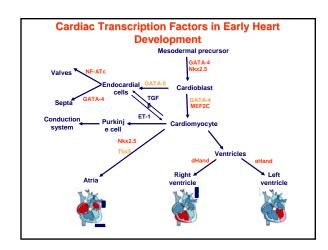


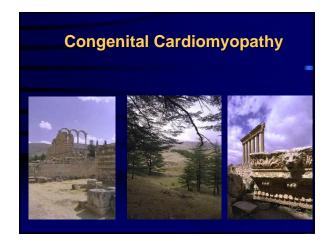


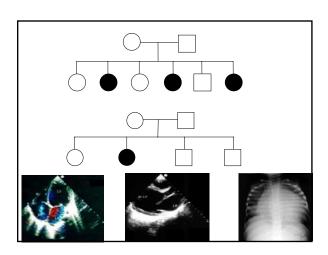


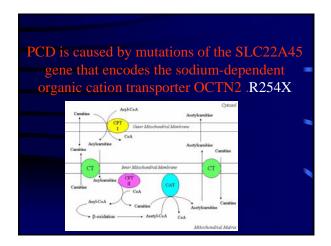


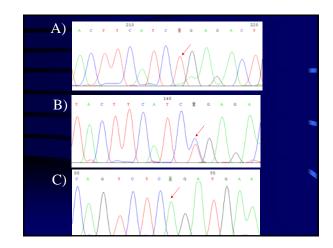





	Homozygous normal allele	Heterozygous	Homozygous "variant" allele
Phenotypically Normal Parents/Sibs	16	15	0
PS	10	15	0
TA	4	8	0
Phenotypically Normal Parents/Sibs	17	15	3
VSD	10	9	2
Normal Unaffected	47	34	0






Exclusive cardiac dysfunction in two familial Primary Carnitine Deficiency cases

Abir A. Yamak, Fadi Bitar, Pascale Karam, and Georges Nemer

Clinical Genetics, 2006

CHD is a leading cause of death in the first year of life

However, just starting.....

More Team Work,

Research, Support and

Collaboration are needed

Progress in Medical Genetics

ISBN: 1-59454-489-1

2006 Nova Science Publishers Inc.

Molecular Markers of Congenital Heart

Disease

By George Nemer and Fadi Bitar